

Unit 7.2 – Computer Systems and Computational Thinking Name:

Target:

A definition of a Computer System is

How you will be assessed

- Your teacher will look at your workbook and leave comments regarding the completion of your work.
- You will have regular questioning and quick fire questions at the beginning of lessons.
- You will sit a mid unit and end of unit test to assess your knowledge.
- You will produce work which your teacher will assess.

Unit 7.2 Assessment Grid

	ADVANCED	INTERMEDIATE	FOUNDATION
Lesson 1	I can identify and explain how different components of a computer system operate in everyday devices.	I can explain how different components of a computer system operate in devices.	I can demonstrate basic knowledge on how computer systems work.
Lesson 2 & 3	I can describe how a computer uses binary to store data and instructions.	I can demonstrate knowledge of how a computer uses binary to store data and instructions.	I can provide a simple explanation of how a computer uses binary.
Lesson 3, 4 & 6	I can accurately calculate and solve problems using binary, denary and binary addition.	I can calculate and solve some problems using binary, denary and binary addition.	I can calculate and solve some problems using binary and denary/
Lesson 7, 8 & 9	I can explain all methods of computational thinking and apply them precisely when problem solving.	I can identify methods of computational thinking and apply them when problem solving.	I can identify and use some methods of computational thinking.

	Subj	ject Year 7	Ter	m Spring	Topic 7.2	Programming – Com	oute	er S	Systems and (Computat	ional Thinking
) 1				Computer Sy	/stems						Computer
	1	Computer System	A devic	e that consists of	input, process, outp	ut and storage.	1		Computationa	l Thinking	Allows a complex
	2	Input	Provide	es data to a comp	uter system. e.g. key	/board.					developed. The so a human or both c
))	3	Output	Used to monito		e results of data tha	t has been processed, e.g.	2	!	Abstraction		Focusing on the im
)]	4	Process	A calcu	lation is carried o	ut on input to turn it	t into meaningful output.	3		Decomposition	1	Breaking down a c
	5	Storage	orage Used to store data, e.g. a USB stick.						<u>'</u>		manageable parts.
0)				Computers an	nd Binary		1 4	ļ	Pattern Recogn	nition	Looking for similar
)	1	Instructions		A single action t processor.	hat can be performe	ed by a computer	5	5 Algorithms			Developing a step- follow to solve the
<i>)</i>	2	Data		Units of informa	ation given to a com	puter system.]_				
)	3	3 Central Processing Unit (CPU)		Central Processing Unit (CPU) is the brain of the computer that processes program instructions.							
0	4	Transistors			en and close circuits ntain millions of tra	to communicate electrical nsistors.					-
3	5	Boolean Logic		A form of logica true or false.	l algebra which wor	k only with two values,	1	1 Identify Reco		Recognise	Comman , list, name or other
	6	AND				1 (ON) in order for the	1				
•				output to be 1 (ON).		- ²	2	Explain		dea, situation or pro acts or data.	
	7 OR		OR Has two inputs. Either of the inputs have to be 1 (ON) in order for the output to be 1 (ON), otherwise the output is 0 (OFF).] 3	3	Describe Give an account in words characteristics.				
)	8 NOT		Has one input. The input has to be 0 (OFF) for the output to be 1 (ON)., otherwise the output is 0 (OFF).		4	1	Calculate		a numerical answer,		
, ,	9	Binary				symbols, 0 and 1. Also	7 -	4		_	
)				known as base 2			5		Demonstrate	Show in a	n explicit way.
)	10	Denary			tem most commonl que digits 0 to 9. Als	y used by people. It o known as decimal or	6	5	Solve	Find an ar problem.	nswer to, explanation

	Computer Systems								
1	Computational Thinking	Allows a complex problem to be taken, understood and a solution is developed. The solutions can be presented in a way that a computer, a human or both can understand.							
2	Abstraction	Focusing on the important information only, ignoring irrelevant detail .							
3	Decomposition	Breaking down a complex problem or system into smaller, more manageable parts.							
4	Pattern Recognition	Looking for similarities among and within problems.							
5	Algorithms	Developing a step-by-step solution to the problem, or the rules to follow to solve the problem.							

	Command Words									
1	Identify	Recognise, list, name or otherwise characterise.								
2	Explain	Make an idea, situation or problem clear by describing it in detail revealing relevant facts or data.								
3	Describe	Give an account in words of someone or something including all of the relevant characteristics.								
4	Calculate	Generate a numerical answer, with workings shown.								
5	Demonstrate	Show in an explicit way.								
6	Solve	Find an answer to, explanation for, or means of effectively dealing with a problem.								

Lesson 1 – How Computers Work

- Be able to provide a definition of a computer system
- Be able to identify examples of input and output methods
- Be able to describe how a computer system works

Task 1: Using the Internet find 3 devices each for input, storage and output. Describe what each device does and how it could be used in school.

Input Device 1:

Describe what it does:

Where could it be used in school?

Input Device 2:

Describe what it does:

Where could it be used in school

Input Device 3:

Describe what it does:

Where could it be used in school

...Continued Task 1: Using the Internet find 3 devices each for input, storage and output. Describe what each device does and how it could be used in school.

Lesson 1

Storage Device 1:

Describe what it does:

Where could it be used in school?

Storage Device 2:

Describe what it does:

Where could it be used in school

Storage Device 3:

Describe what it does:

Where could it be used in school

...Continued Task 1: Using the Internet find 3 devices each for input, storage and output. Describe what each device does and how it could be used in school.

Lesson 1

Output Device 1:

Describe what it does:

Where could it be used in school?

Output Device 2:

Describe what it does:

Where could it be used in school

Output Device 3:

Describe what it does:

Where could it be used in school

Next steps: Find the device responsible for **processing** in a computer. Create a fact file which includes the following:

Name:	
What does it do in a computer system?	IMAGE
What human body part is it referred to?	
Why is this component so important to a computer system?	

Lesson 2 – The CPU and Boolean Logic

- Understand how instructions are stored and executed using the Central Processing Unit (CPU)
- Explain how transistors use Boolean logic to create computer systems
- Identify uses of the Boolean logic operators: AND, OR and NOT in everyday systems

Quick Fire Questions

1. A computer system is...

- 1.
- 2.
- 3.
- 4.

Task 1: Fill in the definitions for the key terms covered so far, using your knowledge organiser.

Key Term	Definition
Computer System	
Input	
Output	
Process	
Storage	
CPU	
Transistor	
Binary	

...Continued Task 1: Using the Internet find examples of devices that use the Boolean logic gates. Try to find at least two examples for each.

AND	OR	NOT
Example 1	Example 1	Example 1
Example 2	Example 2	Example 2

Next steps: Think about the different computer systems that are used around school, e.g. the air conditioning unit. Explain which Boolean Logic gates have been used to create them and why.

Lesson 3 – Denary and Binary

- Understand why all data is represented in binary in a computer
- Identify the numbers in the binary and denary systems
- Calculate and convert binary numbers to denary

Quick Fire Questions

- 1. CPU means...
- 2. The body part a CPU is referred to is...

- 3. A CPU is important to a computer system because...
- 4. The three Boolean Logic gates are:
 - 1.
 - 2.
 - 3.

Task 1: Answer the questions based on the numbering systems, you must use key words in your answers.

- 1. What numbers are used in the denary number system?
- 2. Who is most likely to use denary?
- 3. Explain what is meant by base 10.
- 4. What numbers are used in the binary number system?
- 5. Who is most likely to use binary?
- 6. Explain what is meant by base 2.
- 7. How is data represented in binary?

Lesson 3

...Continued Task 1: Using the example calculate and convert the numbers.

8	4	2	1		Denary Number
0	1	0	1	=	5
0	0	0	0	=	
0	0	1	1	=	
0	0	0	1	=	
0	1	1	1	=	
0	0	1	0	=	
1	0	0	0	=	
0	1	0	0	=	
0	1	1	0	=	
1	0	0	1	=	
1	1	1	1	=	

Next steps: Continue to calculate and convert the numbers. Create calculations for a friend to figure out.

Write a description of the numbering systems, include key words and full sentences.

128	64	32	16	8	4	2	1		Denary Number
1	0	0	0	0	1	1	1	=	135
0	1	0	0	0	1	1	0	=	
0	0	1	0	0	0	1	1	=	
0	0	0	1	1	0	1	1	=	
1	1	1	0	1	0	1	0	=	
1	1	1	1	1	1	1	1	=	
0	1	0	1	1	0	0	1	=	
1	0	1	0	0	0	1	1	=	
1	1	1	1	0	0	0	0	=	

Binary number system is...

Denary number system is...

Lesson 4 – Binary and Denary

- Identify the numbers in the binary and denary systems
- Calculate and convert denary numbers to binary numbers
- Demonstrate understanding of the numbering systems by solving calculations

Quick Fire Questions

1. Denary uses the numbers...

3. Explain how to convert denary numbers to binary:

Task 1: Using the example calculate and convert the numbers.

8	4	2	1		Denary Number
0	1	1	1	=	7
				=	15
				=	10
				=	0
				=	3
				=	1
				=	14
				=	12
				=	8
				=	7
				=	4

...Continued Task 1: Using the example calculate and convert the numbers.

128	64	32	16	8	4	2	1		Denary Number
0	0	0	0	0	1	0	1	=	5
								=	130
								=	255
								=	15
								=	71
								=	48
								=	194
								=	56
								=	198
								=	66
								=	155

Next steps: When computers use binary they do not just use numbers, they convert data into letters, symbols and other commands. Using the Internet research what is ASCII and find out how this related to Binary.

ASCII is			
My name using	the ASCII table is		
iviy name using	the ASCII table is		

Lesson 5 – Mid-Unit Assessment

- Identify the AWOL statements you have achieved so far in line with your target
- Complete the mid-unit assessment tasks
- Continue completing the tasks covered in previous lessons

thinking.

Task 1: Click the link to complete your mid-unit assessment. Once complete fill in the targets you think you have achieved with green.

Mid	Unit	
Asse	ssment	Link

computer uses binary to store data and instructions.
I can accurately calculate and solve problems using binary, denary and binary addition.
I can explain all methods of computational thinking and apply them precisely when problem solving.

ADVANCED	INTERMEDIATE	FOUNDATION	
I can identify and explain how different components of a computer system operate in everyday devices.	I can explain how different components of a computer system operate in devices.	I can demonstrate basic knowledge on how computer systems work.	
I can describe how a computer uses binary to store data and instructions.	I can demonstrate knowledge of how a computer uses binary to store data and instructions.	I can provide a simple explanation of how a computer uses binary.	
I can accurately calculate and solve problems using binary, denary and binary addition.	I can calculate and solve some problems using binary, denary and binary addition.	I can calculate and solve some problems using binary and denary/	
I can explain all methods of computational thinking and apply them precisely when	I can identify methods of computational thinking and apply them when problem	I can identify and use some methods of computational	

solvina

My Score:

Next steps: Look through your peer's work and mark each section identifying if you think criteria has been met (YES or NO).

For each section provide a suggestion which will help improve their progress.

Once complete finish off any outstanding work.

	_	
Criteria	Y/N	Suggested improvements
All quick fire		
questions		
completed?		
Key terms used?		
Each lesson task completed?		
Final thoughts completed?		
Overall feedback		
Peer Feedback completed by:		
Date:		

Lesson 6 – Binary Addition

- Identify the numbers in the binary and denary systems
- Calculate and solve problems using binary addition
- Demonstrate understanding of the numbering systems by solving calculations

Quick Fire Questions

1. Base 2 means...

3. Explain what the numbers used in binary mean to a computer...

Task 1: Complete the calculations using your binary, denary and binary addition knowledge.

For each of the binary values below, write down the denary equivalent:

- **1.** 101 =
- **2.** 1 0111 =
- **3.** 11 1011 =
- **4.** 1100 1010 =
- **5.** 1000 0001 =
- **6.** 1010 1010 =
- **7.** 1111 1111 =

For each of the denary values below, write down the binary equivalent:

- **1.** 14 =
- **2.** 51 =
- **3.** 101 =
- **4.** 150 =
- **5.** 174 =
- **6.** 255 =

...Continued Task 1: Complete the calculations using your binary, denary and binary addition knowledge.

	8	4	2	1			Denary
	0	0	1	1	=		3
+	1	0	0	0	=	+	
=					=	=	

	8	4	2	1			Denary
	0	1	1	1	=		7
+	1	0	0	0	=	+	
=					=	=	

	1	0	0	1	=		
+	0	1	0	0	=	+	
=					=		

	1	0	1	0	=		
+	0	1	0	0	=	+	
=					=		

Use the bottom row to help carry numbers, for example:

	8	4	2	1			Denary
	1	0	1	1	=		11
+	0	0	1	0	=	+	2
=	1	1	0	1	:	=	13
		1					

Lesson	6
--------	---

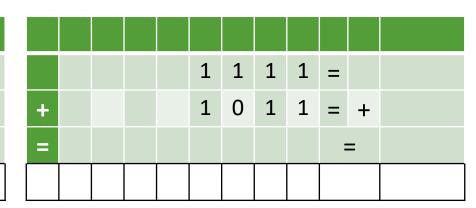
Binary addition rules:

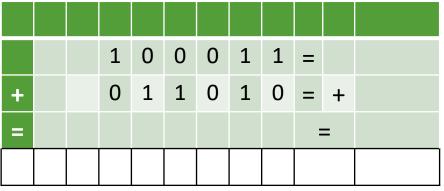
$$0 + 0 = 0$$

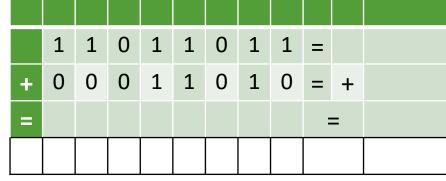
 $0 + 1 = 1$

$$1 + 0 = 1$$

$$1 + 1 = 0 Carry 1 = 10$$


$$1 + 1 + 1 = 1 Carry 1 = 11$$


	1	0	1	1	=		
+	1	0	1	0	=	+	
=					=		


...Continued Task 1: Complete the calculations using your binary, denary and binary addition knowledge.

	8	4	2	1			Denary
	1	0	1	1	=		11
+	0	0	1	0	=	+	2
=	1	1	0	1	=	=	13
		1					

	1	0	1	1	=		
+	0	0	1	1	=	+	
=					=		

Binary addition rules:

$$0 + 0 = 0$$

 $0 + 1 = 1$

$$1+0=1$$

$$1 + 1 = 0 Carry 1 = 10$$

$$1 + 1 + 1 = 1 Carry 1 = 1$$

Next steps: Match the key terms with the phrases below to help embed your subject knowledge. Finish off any outstanding tasks.

A calculation is carried out on input to turn it into meaningful output.

Process

A number system that contain two symbols, 0 and 1. Also known as base 2.

Binary

A number system most commonly used by people. It contain 10 unique digits 0 to 9. Also known as decimal or base 10.

Denary

Has two inputs. Either one of the input have to be 1 (ON) in order for the output to be 1 (ON), otherwise the output is 0 (OFF).

AND

Has two inputs. The inputs must be 1 (ON) in order for the output to be 1 (ON).

OR

A device that consists of input, process, output and storage.

Lesson 7 – Computational Thinking

- Demonstrate an understanding of computational thinking
- Describe how people use computational thinking and decomposition when problem solving
- Identify problems and solve them using decomposition

Quick Fire Questions

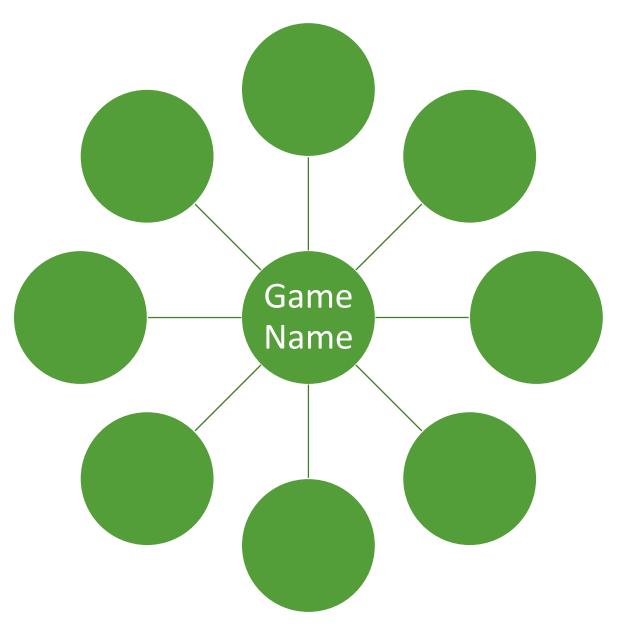
Binary only uses two numbers?
True / False

Denary uses nine numbers?True / False

3. What are the rules when adding numbers in binary?

Task 1: Complete the tasks and explain how you have used decomposition to come up with a solution. How did you break the problem down?

How would you decompose the following tasks? Going to your next lesson Creating a new app for a **Brushing your teeth?** Which toothbrush to use in school? phone?


One finished click the <u>link for the River Crossing</u> Challenges, how many levels can you complete?

Next steps: Create an arcade game of your choice, e.g. Pacman. How can you break this down? Write down key elements you will need.

My game idea is...

I will need to....

Lesson 7

Lesson 8 – Abstraction and Pattern Recognition

- Demonstrate an understanding of computational thinking
- Describe how people use computational thinking and apply it during problem solving
- Solve problems using abstraction and pattern recognition techniques

Quick Fire Questions

1. Computational Thinking means...

- 2. What are the four branches to computational thinking?
 - 1.
 - 2.
 - 3.
 - 4.
- 3. Why is decomposition important to us when problem solving?

Task 1: Complete the tasks using abstraction and pattern recognition knowledge.

Abstraction means	
Example of abstraction being used:	
Pattern recognition means	
Example of pattern recognition being used:	

Click the link to play the Minesweeper game, can you figure out the patterns needed to complete the game successfully? Write down the patterns you can see.

Next steps: Using the Internet find an image of a real aeroplane and a paper aeroplane. Identify the necessary features needed to create the paper aeroplane, e.g. wings. Can you identify the unnecessary features that have not been used, e.g. windows.

Image of paper aeroplane

Image of real aeroplane

Necessary Features

- Wings
- •
- •
- •
- •
- •
- •
- •

Unnecessary Features

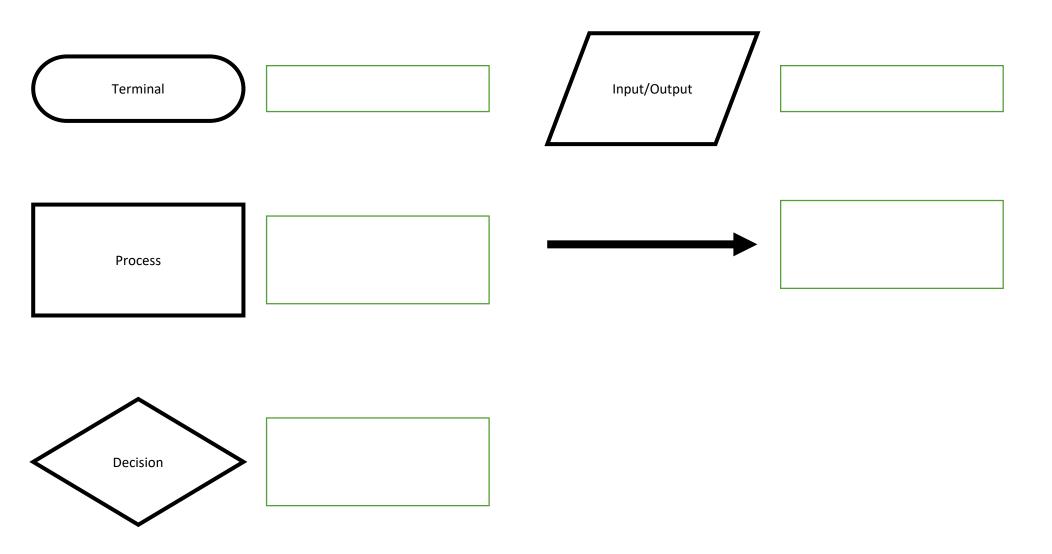
- Wings
- •
- •
- •
- •
- •
- •
- •

Lesson 9 – Algorithms

- Demonstrate an understanding of computational thinking
- Describe how people problem solve using algorithms
- Solve problems using flow diagrams

Quick Fire Questions

Abstraction filters out the unnecessary details?
True / False



2. Why do we look for patterns in problems?

3. Computational thinking is important because...

Task 1: Label each flow diagram symbol and explain what the symbol is used to represent in the box provided.

...Continued Task 1: Using the symbols from the previous slide create a flow diagram to demonstrate how to make a cheese sandwich.

Print screen of your flow diagram here.			

Next steps: Create a flow diagram using the website www.draw.io for one of the following tasks: Making a cup of tea, walking to school or logging on to a computer.

Print screen of your flow diagram here.

Lesson 10 – End of Unit Assessment

- Identify the AWOL statements you have achieved so far in line with your target
- Complete the end of unit assessment tasks
- Continue completing the tasks covered in previous lessons

Task 1: Click the link to complete your end of unit Lesson 10 assessment. Once complete fill in the targets you think you have achieved with green.

ADVANCED

End	of	Unit	
Asse	essr	ment	Link

I can identify and explain how different components of a computer system operate in everyday devices.	I can explain how different components of a computer system operate in devices.	I can demonstrate basic knowledge on how computer systems work.
I can describe how a computer uses binary to store data and instructions.	I can demonstrate knowledge of how a computer uses binary to store data and instructions.	I can provide a simple explanation of how a computer uses binary.
I can accurately calculate and solve problems using binary, denary and binary addition.	I can calculate and solve some problems using binary, denary and binary addition.	I can calculate and solve some problems using binary and denary/
I can explain all methods of computational thinking and apply them precisely when problem solving.	I can identify methods of computational thinking and apply them when problem solving.	I can identify and use some methods of computational thinking.

INTERMEDIATE

FOUNDATION

My Score:

Next steps: Look through your peer's work and mark each section identifying if you think criteria has been met (YES or NO).

For each section provide a suggestion which will help improve their progress.

Once complete finish off any outstanding work.

Criteria	Y/N	Suggested improvements
All quick fire		
questions		
completed?		
Key terms used?		
Each lesson task completed?		
Final thoughts completed?		
Overall feedback		
Peer Feedback completed by:		
Date:		